

INTRODUCTION

Routes are comprised of a series of tools inside the fab.

Defect 1

Defect data represents the number of defects of each type for the various routes

					Counts / Positive Numbers / Positive Integers				
Step 1	Step 2	•••	Step N	Route	Def 1	Def 2	Def 3	Def 4	Total
T _{1,1}	T _{2,1}	•••	T _{N,3}	route 1	2	0	0	2	4
T _{1,2}	T _{2,4}		T _{N,3}	route 2	0	0	0	0	0
T _{1,3}	T _{2,1}		Т _{N,7}	route 3	0	4	53	2	59
•	•			•	•	•	•	•	•
•	•						•	•	

APPLICATIONS

- Exploratory adjustments on the best route (new recipes, or parameters, are tested on the best routes)
- Potential use in scheduling

- Efficiently ranks 14 billion routes using only 652 sample routes.
- Model count data sets that are highly ii. overdispersed due to excess zeros.

Ranking Routes in Semiconductor Wafer Fabs

Shreya Gupta^a, John J Hasenbein^b

a: PhD Student, shreya.gupta@utexas.edu; b: Professor, jhas@mail.utexas.edu; Operations Research & Industrial Engineering Graduate Program, The University of Texas at Austin

CHALLENGES

Data Summary

- 2 months of data
- 4 defect types
- 5 to 15 tools within each step
- 14 billion possible routes
- 652 routes represented
- 85-97% zero defect counts

OBJECTIVES

Build a statistically based heuristic that can:

METHODOLOGY

COUNT REGRESSION

- *n* number of tools
- X_{jl} dummy variable for l^{th} tool of j^{th} step: $X_{jl} = \begin{cases} 1, \\ 0, \end{cases}$ Tool *l* of *j*th step
- μ_{ij} Poisson rate of incurring the i^{th} defect due to the j^{th} step
- **Count Regression equation:**

$$\ln(\mu_{ij}) = \beta_{ij1} + \sum_{l=2}^{l}$$

- β_{ij1} effect of l^{th} tool of j^{th} step on i^{th} defect
- Y_{iil} average number of the i^{th} defect incurred due to the l^{th} tool of the j^{th} step:

$$Y_{ijl} = \begin{cases} e^{\beta_{ij1}}, & \text{Te} \\ e^{\beta_{ij1} + \beta_{ijl}}, & \text{Te} \end{cases}$$

- p_{ii} probability of incurring the i^{th} defect by the j^{th} step
- **Count Regression Equation:**

$$\ln\left(\frac{p_{ij}}{1-p_{ij}}\right) = \beta_{ij1} + \sum_{l=1}^{n}$$

 p_{iil} - probability of incurring the i^{th} defect by the l^{th} tool j^{th} step:

$$p_{ijl} = \begin{cases} \frac{e^{\beta_{ij1}}}{1 + e^{\beta_{ij1}}}, \\ \frac{e^{\beta_{ij1} + \beta_{ijl}}}{1 + e^{\beta_{ij1} + \beta_{ijl}}}, \\ 1 + e^{\beta_{ij1} + \beta_{ijl}}, \end{cases}$$

Expected number of defects by the hurdle model:

$$E(Y_{ijl}) = \begin{cases} p_{ijl} \cdot e^{\beta_{ij1}}, \\ p_{ijl} \cdot e^{\beta_{ij1} + \beta_{ijl}}, \end{cases}$$

SAMSUNG SEMICONDUCTORS

EQP_31 EQP_16 EQP_49

Tool $l \neq 1$

12

21

15