

a: Ph.D. Student, andrew.beck@utexas.edu, Operations Research/Industrial Engineering, Department of Mechanical Engineering, The University of Texas at Austin

b: Associate Professor and Director of Operations Research/Industrial Engineering, Joint Appointment in Petroleum and Geosystems Engineering, ebickel@utexas.edu, The University of Texas at Austin

#### INTRODUCTION

- Unconventional oil and gas wells are valuable parts of a portfolio due to their flexibility.
- Unlike conventional capital assets, commitments can be scaled upwards or downwards according to the market or managerial preferences.
- The value of waiting to drill a well at the optimal time, also known as the option value, must be correctly captured by decision makers. Otherwise, the full value of flexibility in a portfolio will be lost.

#### 2-WELL PLANNING EXAMPLE

Consider these two wells. Which one should we drill this year?



Well A





Well B NPV = \$4MM

- We should clearly drill A this year and B next year for \$11.6 MM.
- But what about option value?



Well A NPV \$8MM W.NPV \$9MM



Well B NPV = \$4MMW.NPV = \$2M

We should clearly drill B this year and A next year for \$13MM.

#### MOTIVATING EXAMPLE

#### **MODELING PRICE UNCERTAINTY**

2017

0.5 \$50.00 0.5



| Р                           | 1  | 2    | 3     | 4     | NPV |      |                               |                             |                 |  |
|-----------------------------|----|------|-------|-------|-----|------|-------------------------------|-----------------------------|-----------------|--|
| <sup>1</sup> / <sub>8</sub> | 50 | 62.5 | 78.13 | 97.66 | 173 |      |                               |                             |                 |  |
| <sup>1</sup> / <sub>8</sub> | 50 | 62.5 | 78.13 | 62.5  | 147 |      | VE VURK DACKVARDS I           |                             |                 |  |
| <sup>1</sup> /8             | 50 | 62.5 | 50    | 62.5  | 100 | Exp. | 2017                          | 2018                        | Drilling        |  |
| <sup>1</sup> /8             | 50 | 62.5 | 50    | 40    | 83  |      | \$50.00<br>D: \$67<br>W:\$103 | \$62.50                     | yields a NPV of |  |
| <sup>1</sup> /8             | 50 | 40   | 50    | 62.5  | 39  | \$67 |                               | D: \$184 // W: <b>\$188</b> |                 |  |
| <sup>1</sup> /8             | 50 | 40   | 50    | 40    | 22  |      |                               |                             | waitin          |  |
| <sup>1</sup> / <sub>8</sub> | 50 | 40   | 32    | 40    | -8  |      |                               | > \$40.00<br>D: \$0         | expect          |  |
| <sup>1</sup> / <sub>8</sub> | 50 | 40   | 32    | 25.6  | -19 |      |                               | W:\$38                      | \$103!          |  |
| -                           |    |      |       |       |     |      |                               |                             |                 |  |

# **Options Valuation in Unconventional Oil & Gas Wells**

# Andrew Beck, Prof. Eric Bickel

# METHODOLOGY (1/2)

Consider a well with known production of 4 bbls in year 1, 3 bbls in year 2, 2 bbls in year 3, and 1 bbl in year 4.

Let this well cost \$400 to drill, and have 4 years remaining on its lease.

Let prices follow a binomial lattice, so at each point they can rise or fall: 2018 2019 2020



#### VALUE OF DRILLING NOW

• We can value the well by averaging the NPV over every possible price path.







# The University of Texas at Austin **Operations Research and** Industrial Engineering

Cockrell School of Engineering

# RESULTS

#### **OPTIONS GENERATE SIGNIFICANT VALUE**

- In our sample problem, having a 4 year option on a lease increases the project value by 53%
- If exercised optimally, options protect downside risk allow and against managers to fully take advantage of upside risk.
- Uncertainties are a source of value. The better we can understand uncertainties affecting a decision, the more value we can create through optimal decision making.
- Executives across multiple sectors lose billions of dollars in revenue by not fully modeling option values on projects.

# **ONGOING WORK**

### 1. Optimal Well Scheduling Using Option Valuation:

In joint work with Statoil, we are looking at optimizing well scheduling in shale oil fields by capturing option values of wells through approximate dynamic programming techniques.

# 2. Utility Functions in Applied Decision Analysis Projects:

We are studying when it is appropriate for decision analysts to use different utility functions, with applications from oil and gas.

#### OYEAR 1

g the well now an expected f \$67, but g has an ed NPV of