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Bayesian Identification of Hidden Markov Models with Application to  
Condition-Based Monitoring 

METHODOLOGY 
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Bayesian Estimation for HMM Parameters 

Hidden Markov Model 

1. Extension of  methodology to handle  
imperfect maintenance  
Imperfect maintenance events can cause dynamical changes 
that are not easily detectable by sensors. To capture those 
changes, we are experimenting new modeling and 
monitoring approaches. Preliminary results are available 
from application of the new methods to both PECVD and 
plasma etch processes in semiconductor manufacturing. 

2. Analysis of statistical properties of Bayesian 
estimator 
Asymptotic normality of the posterior distribution of HMM 
parameters is under investigation. 

SIMULATION RESULTS 

ONGOING WORK 
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Process Monitoring Using HMM 

• Powerful monitoring ability: based on modeling of 
unobservable degradation process affected by 
imperfect maintenance operations. Model uncertainty 
addressed. 

• Wide and easy adaptability: compatible with sensor 
signal of various types and frequencies requiring 
minor/moderate configuration for the user. 

• Cost-effective data usage: use ONLY online process 
data. No dependency on external information 
resource.  

• Superior diagnostic performance: 10% ~ 20% better 
than PCA to detect known machine abnormality , 
validated on semiconductor manufacturing process. 

INTRODUCTION 

Project Overview 

Program Area: Condition Diagnostic and Prognostic 

Objectives: Develop HMM-based generic condition 
monitoring methods that are aware of model 
uncertainty and applicable to partially observable 
processes.  

Deliverables: HMM identification and monitoring code 
that works with features extracted from sensor signals 
collected from real manufacturing systems.  
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Risk Minimization Formulation 

𝜽 := argmin
𝜽=(𝝂,𝑷,𝝓)

 𝐿 𝜽, 𝜽0 Pr 𝜽0|𝒚𝑇 𝑑𝜽0
Θ

 

s.t. ∑𝑖=1
𝑚 𝜈𝑖 = 1, 𝜈𝑖 ≥ 0, ∀𝑖 

  ∑ 𝑝𝑖𝑗
𝑚
𝑗=1 = 1, ∀𝑖, 𝑝𝑖𝑗 ≥ 0, ∀𝑖, 𝑗, 

          𝝓 ∈ Φ. 

Theoretical solution: posterior mean 

𝜽 = 𝐸 𝜽0 𝒚𝑇) =  𝜽0 Pr 𝜽0|𝒚𝑇 𝑑𝜽0
Ω

 

It can be proved the 𝜽  is the solution to the above 
problem under Dirichlet prior of 𝑝𝑖⋅, ∀𝑖, when no 
constraints applied on 𝝓 .  

Computational solution: Monte Carlo approach: 

generate samples 𝜽 𝑛
𝑛=1

𝑁
 from joint posterior 

distribution Pr 𝜽0 𝒚𝑇) so that 

 𝐸 𝜽0 𝒚𝑇) ≈
1

𝑁
 𝜽(𝑛)

𝑁
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Definition: A hidden Markov model is a doubly 
embedded stochastic process 𝑋𝑡 , 𝑌𝑡 𝑡=0

∞  that satisfies 
the Markov property in 𝑋𝑡 and parameterized by 

Pr(𝑀𝑜𝑑𝑒𝑙) Pr 𝐷𝑎𝑡𝑎 𝑀𝑜𝑑𝑒𝑙  

Pr(𝐷𝑎𝑡𝑎)
 

= Pr 𝑀𝑜𝑑𝑒𝑙 𝐷𝑎𝑡𝑎  

Initial 
distribution Transition 

probability 
matrix 

Observation 
parameters (or 
matrix in discrete 
case) 

𝜽 = 𝝂, 𝑷,𝝓  

Using HMM parameters and their uncertainty, system 
dynamics can be characterized by distribution of log-likelihood 
slope (DLLS)  

𝛬 =
log Pr 𝒚𝑡2 𝜣 − log Pr 𝒚𝑡1 𝜣

𝑡2 − 𝑡1
 

The Kolmogorov-Smirnov (KS) distance between nominal DLLS 
𝛬0 and current DLLS 𝛬1 is  

𝐾𝑆(𝛬0, 𝛬1) = sup
𝑥

|𝐹𝛬0 𝑥 − 𝐹𝛬0 𝑥 | , 

which indicates dynamical shift. 

METHODOLOGY RESULTS ON REAL DATA 
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Multiple Months of 
Production Tool Data: 

RF : HF power, Load Cap, 
Tune Cap, LF power 

Pressure: Chamber, PCV 
angle, Loadlock 

Chemistry: Gas Flows 

Temperature: Chamber, 
Pedestal 
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Down 
time due 
to particle 
failure 

HMM based monitoring 
method reduces 20% of 
false alarm rate  on 
average  than 
traditional Principle 
Component Analysis 
(PCA) / T2 stats based 
monitoring method  

Degradation Modeling of Unobservable System 

Expected Benefits of Project Deliverables 

1 3 2 4 

Simulation Configuration:  Number of observations in each sequence: 10 to 25; Number of 
sequences in three experiments: 100/200/300s; Model information: 𝑛𝑠𝑡𝑎𝑡𝑒 = 4; Gibbs sampling 
iterations 𝑁0 = 100,𝑁 = 500.  Actual parameters : 𝝂 = 0.7 0 0.3 1 , 𝝁 = 0 5 10 20 , 𝝈2 =
 5 2 1 2 ,𝑷 = 0.9 0.1 0.0 0.0 ; 0 0.7 0.3 0 0 ; 0 0 0.95 0.05; 0 0 0 1 ; Prior distribution:  

𝑝
𝑖.
 ~Dir 1,1,1,1 , 𝜇𝑖~N 0,10 , 𝜎𝑖

2~IG(1,1) for 𝑖 = 1,2,3,4.  

Estimation of Gaussian Non-ergodic HMM 

Monitoring Benchmark on a PECVD process 

Using more and more simulated data 
(100/200/300 sequences of 
observations), all Bayesian estimates of 
HMM parameters  converge to the true 
model parameters. In addition, model 
uncertainty , i.e. width of %95 credible 
intervals of the parameters ,  convergence 
to zero. This phenomenon occurs on 
estimation for all types of HMM we have 
studied, including discrete / Gaussian, 
ergodic / non-ergodic, and homogeneous 
/ nonhomogeneous HMMs. 

Coulomb Crystal 


